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Can neuroimaging tell us anything about the mind?

“No amount of knowledge about the hardware of a computer
will tell you anything serious about the nature of the software
that the computer runs. In the same way, no facts about the
activity of the brain could be used to confirm or refute some
information-processing model of cognition." (Coltheart, 2004, p.
22)

Max Coltheart
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This Is Your Brain on Politics

Published: November 11, 2007

This article was written by Marco Iacoboni, Joshua Freedman and
Jonas Kaplan of the University of California, Los Angeles, Semel
Institute for Neuroscience; Kathleen Hall Jamieson of the Annenberg
Public Policy Center at the University of Pennsylvania; and Tom
Freedman, Bill Knapp and Kathryn Fitzgerald of FKF Applied
Research.

IN anticipation of the 2008 presidential
Multimedia election, we used functional magnetic
resonance imaging to watch the brains of a group of swing
voters as they responded to the leading presidential
candidates. Our results reveal some voter impressions on
which this election may well turn.

DEMOCRAT REPUBLICAN

Our 20 subjects — registered voters who stated that they
were open to choosing a candidate from either party next
November — included 10 men and 10 women. In late
summer, we asked them to answer a list of questions about
their political preferences, then observed their brain activity
for nearly an hour in the scanner at the Ahmanson Lovelace Brain Mapping Center at the
University of California, Los Angeles. Afterward, each subject filled out a second
questionnaire.

{51 Side Show

This Is Your Brain on Politics



DEMOCRATS

EDWARDS

“In res
candic
media

ponse to images of Democratic
ates, men exhibited activity in the

| orbital prefrontal cortex, indicating

emotional connection and positive
feelings.”

“Images of Fred Thompson led to increased
activity in the inferior frontal cortex, a brain
structure associated with empathy.”

“Subjects who had an unfavorable view of
John Edwards responded to pictures of him
with feelings of disgust, evidenced by
increased activity in the insula, a brain area
associated with negative emotions.”



Do you really love your iPhone?

Ehe New Jork Times

The Opinion Pages
buy-ology

You Love Your iPhone. Literally. Truth and Lies About

Why We Buy
By MARTIN LINDSTROM

Published: September 30, 2011 MARTIN LINDSTROM
.......... Paco Underhill

e “Earlierthisyear, | carried out an fMRI experiment to find out whether iPhones
were really, truly addictive, no less so than alcohol, cocaine, shopping or video
games. In conjunction with the San Diego-based firm MindSign Neuromarketing, |
enlisted eight men and eight women between the ages of 18 and 25. Our 16
subjects were exposed separately to audio and to video of a ringing and vibrating
iPhone...most striking of all was the flurry of activation in the insular cortex of the

brain, which is associated with feelings of love and compassion. The subjects’

orains responded to the sound of their phones as they would respond to the
oresence or proximity of a girlfriend, boyfriend or family member. In short, the

subjects didn’t demonstrate the classic brain-based signs of addiction. Instead,
they loved their iPhones.
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To the Editor:

“You Love Your iPhone. Literally,” by Martin Lindstrom (Op-Ed, Oct. 1), purports to show, using brain
imaging, that our attachment to digital devices reflects not addiction but instead the same kind of
emotion that we feel for human loved ones.

However, the evidence the writer presents does not show this.

The brain region that he points to as being “associated with feelings of love and compassion” (the
insular cortex) is active in as many as one-third of all brain imaging studies.

Further, in studies of decision making the insular cortex is more often associated with negative than
positive emotions.

The kind of reasoning that Mr. Lindstrom uses is well known to be flawed, because there is rarely a
one-to-one mapping between any brain region and a single mental state; insular cortex activity
could reflect one or more of several psychological processes.

We find it surprising that The Times would publish claims like this that lack scientific validity.

RUSSELL POLDRACK
Austin, Tex., Oct. 3, 2011

The writer is a professor of psychology and neurobiology at the University of Texas at Austin. His letter
was signed by 44 other neuroscientists.


http://www.nytimes.com/2011/10/01/opinion/you-love-your-iphone-literally.html
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Does reverse inference work?
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Insula activation is weakly selective

Some voxels active in more than 20% of studies
Yarkoni et al., 2011

poldracklab.org



Reverse inference

e Informal reverse
inference provides
relatively weak
evidence

TE Openio TRENDS i Coamitive Scuries

-~
Levm

Vol %0 Mo 2 Februry 2006

Can cognitive processes be inferred
from neuroimaging data?

Russell A. Poldrack

Dopertmont of Peychology and Brain Rescssch Institute, UCLA, Los Asgeles, CA 90095 1581, USA

There s much Imerest currently In using functional
neurcimaging techniques to understand better the
nature of cognition. One particuler practice that has
become common is ‘reverse inference’, by which the
engagement of a particular cognitive process is inferred
from the activation of & particuler brain region. Such
inferences are not deductively valid, but con still provide
some information. Using & Bayesian analysis of the
BrainMap neurcimaging dstabese, | characterize the
amount of additional evidence in faver of the engage-
mant of & cognitive process that can be offered by »
reverse inference. Its usefuiness is particularly limited by
the selectivity of sctivation in the region of interest, |
argue that cognitive neurosclentists should be circum-
spect in the use of reverse inference, particulerly when
selectivity of the region in guestion cannet be estab-
lshed or is known to be weak.

Introduction
Fenctoasl resramaging techraques such an functosal
magnetic resonance imaging (IMRD provide a measure of
local berain activity in response to cognilive Lasks
undertaken during scaaning. These data allow the
cognitive meuwrosclentist to infer something about the
role of particular beain regiess in cogmitive function,
However, there is increasing use of neurvimaging data o
make the oppesite inference; that is, Lo infer the
engagumzent of particular cognitive functons based oo
activation in particular braia regions. My goal here = 10
analyze this practice, knewn as ‘rovesse inference’, and to
characterize sorme lismitatsons on the effectivesens of this
strategy. The companion paper (= this issuwe by Henson (1
discumcn o complemeatary stratogy for saing nouroims
ong to distinguish competing cognitive theories

The goal of cognitive psychology s o understand the
underlying moental architecture that sspports cognitive
functions. To this end, cognitive peychologists examine the
effects of task manipulstions o behaviera! varisbles, such
as responise Lime o accuracy, and use these dats to test
models of cognitive function. However, it is often not
pomaible Lo determmine on the baxis of bekaviara] vasiablen
alome whether a particslar cognitive prooess is engaged, or
whether a particelar theory of cognitive architecture &
correct; for example, there arv well knows examplen of
theoretical indeterminacy based on behavioral dats (2. If

yronding warhes Pablrach, R A puidoe bicls oda
A bealds widio € laissey 20
o e e D00 0D e et merter & P08 € v | ‘A

neurotmaging were able to provide information regarding
what cognitive processen worv ongaged iz performance of
a partxular task, cognitive psychologists would have
puned a powerful pew wol. Researchers oulaide cognitive
Py :b-ll}:y are also semetimes interested in using
neurcimaging (o determine the engagement of particular
coguitive precesscs. For example, plilosophess maght wish
1o know the degree to which emwtion versus delsitwentive
reasoning plays a role in moral judgments (3L

Inference in neurcimaging

Tho ussal kind of inferonce that s desws frecs nourvisss
Sng data is of the form 5 cognitive process X s engaged,
then brain area Z is active’. Perusal of the discussion
soctiosss of x fow DMRI articles will quickly roveal,
however, an epidemic of reasoning taking the following
form

1) In the presemt study, whea task comparison A was
presontod, bruin azen Z was active,

2) In other studies, when cognitive process X was
putatively engaged, then brain area Z was active.

3) Thus, the activity of aren Z in the present study
demonsirates engagemment of cognitive process X by
Lask cesnpasisen; A

Thin is & ‘reverse infervnce’, in that it ressons back-
wards from the presence of brainm activation te the
cngape=xal of a pasrticuler cognitive furetion,

In many cases the use of reverse infervace is mformal;
the presence of gnexpected activation in a particular region
is explained by refervrce o other wtudies that fousd
sctivation in the same region. However, in some studies
the reverse inference is a centenl feature. In one study (4],
sulgects were scanned uning PET while thoy pesrformed an
economic exchange task in which they had the chance to
pusish thooe who defected. Activation was ebserved in the
darsal stratum when particpants sabjected defectors to
effective punishanent; this activation was inferred to reflect
the rewarding propesties of altesistic punishesent, S
larly, a study mssing MRl in rats |5 compared activity
during pup suckling versus cocaine administration.
Greater activity in the dorsal and ventsal siristum dusing
suckling compared with cocaine adminstration bed the
authoes to coaclude that ‘pup suckding is meore rewarding
than cocaine” (p. 148), In each of thewe stadios, 5 cognitive
process Creward’) was inferred from activation in a
particular brumin symiees (the striztum). Nearsly every
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Formalizing reverse inference

e How can we more formally test the predictive
ability of fMRI?

e Answer: statistical methods for prediction

e Machine learning/statistical learning/pattern
recognition

e \?'*.V"tl',". G 3
B PATTERN RECOGNITION [&
wo MACHINE LEARNING
= Pattern
Classification

Pattern Recognition
- ano Neural Networks
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Decoding mental states using machine learning

fMRI
dataset

train to
classify
mental
states

poldracklab.org

test
accuracy of
decoding on
untrained
data

Cross-validation:
eTrain for each split of
size k

eCompute average
predictive accuracy on
left-out data



96% correct classification

Haxby et al., 2001, Science '



Free task selection (addition versus subtraction)
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SCIENTIFIC

Mind-reading machine knows what you see AM ERI C AN COM

15:26 25 Apnl 2005

NewScientist.com news service

April 25, 2005
Brain Scans Helps Scientists "Read" Minds

NEES The News in 2 minutes

News Front Page .25t Updated: Monday, 25 April, 2005, 00:05 GMT 01:05 UK

\ * E-mail this to a friend & Printable version
' '._,.

v'* Brain scan 'sees hidden thoughts'

Africa Scientists say they can read
a person’'s unconscious

Americas th ht A - I
Asia-Pacific oyg SRR & wESiee
brain scan.

Europe

Middle East F_nhctional MRI scans plot brain

South Asia activity by looking at brain

UK blood flow and are already

Business used by researchers.
Healthl|]

Medical notes
Science/Nature
Technology
Entertainment

A team at University College 'he scan picks up subliminal thought
. activity

London found with fMRI they

could tell what a person was thinking deep down even when

the individual was unaware themselves.




“60 Minutes”, January 4, 2009
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“60 Minutes”, January 4, 2009
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“60 Minutes”, January 4, 2009

“It's tough to make predictions, especially about the future.” - Yogi Berra
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Predicting mental states across people

e Existing work has primarily examined ability to
predict mental states using a classifier trained on
data from the same person

e For many applications of interest, such training
data would not exist for the individual being

tested

e Can we accurately generalize to new individuals?

poldracklab.org



Predicting risky decisions

Balloon #1

Balloon Analog
Risk Task (BART)

Balloon #2

Choice:
Pump

Pre-pump trial

Explode

Helfinstein et al, 2014, PNAS
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Crossvalidation across subjects

18 subjects

18 subjects

18 subjects Train on 5 folds

18 subjects

18 subjects

18 subjects Test on left-out fold

Randomly assign to folds 50 times and average results
Helfinstein et al, 2014, PNAS
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Classification accuracy for risk-taking

Searchlight classification accuracy

Whole-brain
classification:
2%

Left Hemisphere Right Hemisphere p<0002 under
null hypothesis

% @ (by randomization)

Helfinstein et al, 2014, PNAS
poldracklab.org
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Classitying based on activity balance

;s Logistic regression:
67% accuracy

Mean response in Cash Out > Pump voxels
=

_3._
_af p e*e Pre-Cash Out|
e*e Pre-Pump
_5 1 1 1 1 1 1
~4 -3 -2 - 0 1 2 3

Mean response in Pump > Cash Out voxels

Blue: Pre-Pump > Pre-Cashout
Red: Pre-Cashout > Pre-Pump
Helfinstein et al, 2014, PNAS
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Decoding different mental states

e Can we predict what task a subject was
performing, using a classifier trained on other
people?

e 8tasks, 130 subjects total

poldracklab.org



Task # | Task description # subjects Design type

1 Risky decision making (Balloon analog risk task) (Stover etal.,in | 16 Event-related
preparation)

2 Probabilistic classification (no feedback) (Aron et al., 20 Event-related
unpublished)

3 Rhyme judgments on pseudowords (Xue et al., unpublished) 13 Event-related
4 Working memory (tone counting) (Foerde et al., 2006) 17 Event-related
5 50/50 gain-loss gamble decisions (Tom et al., 2007) 16 Blocked
6 Living/nonliving decision on mirror-reversed words (Poldrack et | 14 Blocked

al., unpublished)

7 Reading pseudowords aloud (Xue et al., submitted) 19 Event-related

8 Response inhibition (successful stopping) (Aron & Poldrack, 2006) | 15 Event-related

Poldrack, Halchenko, & Hanson, 2009, Psychological Science



Analysis Crossvalidated | # of voxels
accuracy included

Union of all in-mask voxels across 74% 417,231
subjects (one-vs-one)
Intersection of in-mask voxels across | 80.8% 214,940
subjects (one-vs-many)
Positively activated voxels only 74.6% 83,825
(across all 130 subjects, t > 3, p<.
002) (one-vs-many)
Deactivated voxels only 50.8% 23,736
(t < -3, p<.002) (one-vs-many)

Accuracy above 18.5% is significant at p<.05 by randomization

Task chosen by classfier

Tosk 1 | Task2 | Task3 | Task4 | Taskd | Task6 | Task7 | Task§

Task I 87.5 0.0 0.0 0.0 6.0 0.0 0.0 0.0
~¢ Task? 0.0 90.0 0.0 0.0 0.0 0.0 5.0 5.0
§ Task 3 8.0 230 | 61.5 0.0 0.0 8.0 0.0 0.0
v Task 4 0.0 0.0 0.0 82.4 0.0 0.0 0.0 18.0
— Tusk 0.0 36.0 0.0 0.0 43.8 | 18.2 0.0 0.0
Task 6 0.0 28.0 0.0 0.0 0.0 7.4 0.0 0.0
Task 7 0.0 11.0 0.0 0.0 0.0 0.0 84.0 5.0
Task § 0.0 0.0 7.0 0.0 0.0 0.0 21.0 | 63.0

Poldrack, Halchenko, & Hanson, 2009, Psychological Science




Larger-scale decoding

.-77:?3.‘.-':';:::'52'::".5.;':
?. - ~'.- O p e n f M RI Home View Data Sets Add a Dataset FAQs Contact Us

%
'

Freedom to Share /

OpenfMRl.org is a project dedicated to the free and open sharing of ‘
functional magnetic resonance imaging (fMRI) datasets, including raw data.

|
)
TN i

~Kw

26 tasks, 482 images from 338 subjects
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Classification results

0.6

o
Ul

— Whole-brain:
- RBFSVM 47% accuracy

------ Logistic regression| |

o
D
|

o
w

Classification accuracy

o
N

0.1f

0.0 ] ] ] ] ] ]
2 10 20 20 100 200
# of ICA components

Poldrack et al., 2013, Frontiers in Neuroinformatics
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Predicting individual differences from fMRI

e In neuroscience, correlations are often colloquially
described as “prediction”, but true prediction requires
generalization to new samples

e The ability to predict quantitative variables for new
individuals can be tested using crossvalidation

Crossvalidation Prediction testing
Group 1 —> y
D et

Group 2 »| Training g oo °

o
Group 3 —> / gl * o

o

Group 4 »| Test Actual
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| eave-one-out crossvalidation

SOOL:
: RT = 503.7 + age*-0.530

495 F\

full-sample R? = 0.694

490

reaction time

age
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| eave-one-out crossvalidation

Regression lines for

each fold
full-sample R? = 0.694

reaction time
N

age

poldracklab.org



| eave-one-out crossvalidation

Regression lines for

each fold
‘ full-sample R? = 0.694

LOO CV R? =0.586
mean new sample R2=0.59]1

reaction time
N
[$)]

poldracklab.org



Correlation # Prediction

*| | datapoints sampled from
normal distribution (no
correlation)

eone outlier
ofull-sample R? =0.785
eLOO CV R2=0.025

reaction time
N

*Highlights importance of
examining the raw data!

poldracklab.org
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“The present analysis shows that hemodynamic activity within
the brain prospectively predicted rearrest in an offender sample.”




ACC Group

~""'Low Response
-~ THigh Response

Cum. Survival

0.0~

I T I I I I
0 10 20 30 40 50

Months to Rearrest

Fig. 1. Cox survival function showing proportional rearrest survival rates of
high (solid green) vs. low (dashed red) ACC response groups for any crime
over a 4-y period. Results of this median split analysis were equivalent to
that of the parametric model: bootstrapped B = 0.96; SE = 0.40; P < 0.01;
95% Cl, 0.29-1.84. The mean survival times to rearrest for the low and high
ACC activity groups were 25.27 (2.80) mo and 32.42 (2.73) mo, respectively.
The overall probabilities of rearrest were 60% for the low ACC group and

46% for the high ACC group.
Aharoni et al., 2013



Prediction error

Prediction error using crossvalidation

Reference
dACC

0.30
|

0.25
|

0.20
l

0.15
|

Integrated Brier scores:
Reference: 0.214
dACC: 0.207

0.10
|

0.05
l

0.00
l

I I I I |
0 10 20 30 40

Time
http://www.russpoldrack.org/2013/04/how-well-can-we-predict-future-criminal.html

https://github.com/poldrack/criminalprediction
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https://github.com/poldrack/criminalprediction

r(predicted,actual)

0

Predicting individual differences from fMRI

0.4

0.2

0

-0.2

A) Successful Go -

ol

Baseline

SSRT

M GPRlinear
1 GPRexp
L1 SVM

GoRT ?nﬁv

Variables tested:
Age: subject’s age

SSRT: stop signal reaction time
GORT: go reaction time
SDRT: std. dev. of go reaction time

r(predicted,actual)
0.2

0.

0

o
o

B) Successful Stop -

Age

__Successful Go

M GPRlinear
1 GPRexp
L1 SVM

| B

SSRT GoRT SDRT

r(predicted,actual)
0.2

C) Successful Stop -
Unsuccessful Stop

|Age|

SSRT

B GPRlinear
] GPRexp
1 SVM

=y
——

Go

.

RT  SDRT

—— p<.05 (by randomization)

Cohen et al., 2010, Frontiers in
Human Neuroscience
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Meta-analytic decoding

e All of the results to this point were based on fMRI
data from individual subjects

e Can we push this even further?

e Can we use meta-analytic data from papers?

poldracklab.org



Activation locations

» Brain activity is reported in
(somewhat) standardized format

Table 1

Regions that showed a condition X time interaction in the ANOVA analysis

No. Region Hemisphere BA x y z mm’

1 Middie/supenor temporal gyrus L 21/22/37 52 54 9 13257
2 Inferior frontal gyrus L 45/46/9 -49 26 6 2781
3 Postenior cerebellum L -19 -79 ~38 2214
- Dorsomedial PFC L 98 11 42 47 3051
S Left anterior PFC L 10 -37 49 15 2025
6 Inferior panietal cortex L 407 ~42 ~58 47 3132
7 Dorsal premotor cortex L 6 43 0 50 1485
X Lingual gyrus L 17 - 10 ‘95 2 378
Kl Middle /superior temporal gyrus R 2172237 52 ~40 S 16470
10 Inferior frontal gyrus R 45/46 51 28 6 2241
11 Posterior cerebellum R 23 78 -34 2808
12 Dorsomedial PFC R 9 S 53 29 405
13 Right antenior PFC R 10 38 42 21 5022
14 Inferior panetal cortex R 407 42 53 48 9963
15 Superior frontal gyrus R &8 10 28 60 297
16 Anterior cingulate cortex M 32 0 26 35 5076
17 Postenior cingulate cortex M 23/3117 0 35 31 9612
18 Precuneus M mn9 ! ~76 36 10044

poldracklab.org




Creating meta-analytic brain maps

e Automated Coordinate Extraction (Yarkoni et al, 2011, Nature Methods)

e Automatically extracts activation tables from fMRI papers for 17 journals
e Current database has 4,393 papers (with full text)

e Good accuracy

e 84% sensitivity, 97% specificity against SumsDB manual database
e Meta-analytic maps created for each paper

e 10mm sphere placed at each focus

X Y Z Automated

12 57 -6 coordinate

33 21 15 extraction S
24 15 60

42 6 57

24 -3 57

poldracklab.org




Neurosynth.org

neurosynth.org heta

Home Images Resources

Automated meta-analysis of the term

"working
memory"

Analysis details

# of studies: 363 [view]
% active voxels: 4.6%

Selected location

Posterior 69%
probability:

Image type: | Posterior probability 3

Thresholds:

o B 805 8 8

Direction: | Both

Coords (x,y,2): -28 +4 456

View details for this location

Search again: working memory

Download image (NIFTI format) @

poldracklab.org




Automated meta-analysis

A Term-based Related studies Automated coordinate Meta-analysis
search Mechanisms of Directed extraction
An fMRI Investigation of
: g 1 Placebo-Induced Changes in fMRI X Y Z Study
Pain==Pp| | | "t |=—)p 23 18 45 1
| SumommmL 19 3 12 1
] SsemmsTmemTe -40 0 -16 1
H ] =R 35 -41 29 2
gy (s 2 18 33 2
""" P(PainlActivation)
B  Forward inference Reverse inference
Paln Worklng Memory?
Emotion?
Pain?
sl
& Classification
Working mem. Emotion Pain

B -

P=78% P =64% P= 87%
Select hlghest probability

Yarkoni et al., 2011, Nature Methods
poldracklab.org




Automated meta-analysis

Previous meta-analyses Automated meta-analysis

Forward Inference Reverse Inference
B (P(ActiTerm)) C (P(TermlAct))

Working
Memory

Emotion

P(T emlAct)

% %

Yarkoni et al., 2011, Nature Methods
poldracklab.org




Classification of cognitive states

e Given 2+ terms, can determine which is most likely given the
data

e Naive Bayes classifier: assumes that all features (voxels) are
independent; selects the most probable class

e Can apply this to any activation map—studies, individual
subjects, etc.

Classification
Working mem.  EEmotion Pain
D- DB -
> = 78% = 047% 8"%

Select hng.,hc.st probability

Yarkoni et al, 2011, Nature Methods
poldracklab.org




Classification of new studies

e Cross-validated classification of all studies in
database

e Select 25 high-frequency terms

e Pairwise classification: how well can we
distinguish between each pair of terms?

Yarkoni et al, 2011, Nature Methods
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Executive ... 100%

90%

visual [73][67 [[es][73] 70 [e7 |[71]
Interference ........

wi- [72]/es ||l 71 |[6o][ 75 s B8 7]
Conflict [77]67 (e« [7a] 67 |[77][75][61 (63 []
Spatial ...--...-..
Attention ....========-
Imagery ....

Action [75][70][71|[77][e0][73]es [ o4 ][ |[72] 3 | [67 [ 7]
Sensory. [74][73][73][7a][71][s1[[7e][eo][72][ 73] es |[es BBl [60][2]
Perceptlon ...--...-..-.-..
s o =I==I=I===-

Pain
o [ 7] v 1l el o [
e e eR e e e
Emotion .m 81 -ln..

Social (74 es [72][75[73][78][ 75 [7a][77][ 78 [75 ][ 72][72] 7] ][ 72][7][s0] 72 [B8] o4 | 2]

Episodic [es [61][76][76][75][e4 [71][75][76|[75[72][74 |[77][75][ 78 |[75 [70] 3 [75 [73][ 70 [e2 [ ]
Retrieval (71][71][e6 (7560 |[76][78][ 70 |[72][78][ 71 |[73][71][77 [7s][7e][70 |[e5 |[75][75 |76 | 72| MBI 3]
Reccwonlllllllllllllllll IIIIIII

80%

70%

60%

50%

N RN WS F St © P& @ &
I I g O I I
@ 0 O 03) K OOQ RN\ {\Q‘;\ P G_,Q R \6@' V“%O ‘\00 ?‘\) Qg’ ?’S Q}Q Q Q‘ Q>
CHRNREN OIS v <° d
Q N

Yarkoni et al, 2011, Nature Methods



Using classification to understand mental structure

WM: working memory
TS: Task switching
RS: Response selection
RI: Response inhibition
CC: Cognitive control
Bl: Bilingual language

p ~ 0.6

- 04

0.2

Bl 074" 084" 08" 08" 0.78""

0.0

Lenartowicz et al, 2010, Topics in Cognitive Science
poldracklab.org



What about individual subjects?

e Can we identify cognitive states in individual
(new) subjects?

e Difficult, because:

* NoO opportunity for training
e Datais of a fundamentally different type

o Tested in samples of subjects from working memory,
emotion, and pain studies

e (Can we predict source study type?

Yarkoni et al, 2011, Nature Methods
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Classitying individual subjects

A Classification of new studies Classification of new subjects B
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Yarkoni et al, 2011, Nature Methods
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Automating reverse inference

Table 2. Pearson correlations between searchlight classification
map and NeuroSynth term-based reverse inference activation

maps

Term Correlation (r)
Control 0.1451
Working 0.1159
Numerical 0.1157
Letter 0.1081
Attention 0.1062
Correct 0.1060
Cue 0.0995
Preparatory 0.0970
Load 0.0959
Hand 0.0924

The 10 most highly correlated terms are listed. From Yarktoni et al. (26).

Helfinstein et al, 2014, PNAS
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Neurovault + Neurosynth = automated reverse inference

Feature loadings

To compare the decoded image against
a term, click on an arrow below.

Show | 10 v \entn'a

Search:
feature COIM .y
4= action 0.396

undefined: 3.98 W
X: ‘ 44 Y: | -710 z ‘ 2

Layers

Q> |action (reverse inference)

@ | motor _finger.nii.gz
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o
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B BEb| Bb
¢ |« | |e

& |anatomical

Showing 1 to 10 of 92 entries
Color palette:

' Previous Next
v
grayscale v Crosshairs
Positive /Negative: Pan/zoom
positive v /L abels

Gorgolewski et al., submitted
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Summary: Decoding mental states

e \We can decode mental states across individuals

e This can provide insights into the similarity space
of mental processes

e And ultimately inform our ontology of mental
processes
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Decoding representational structure using fMRI

ePsychological theories rarely make clear
predictions about activation

eBut they often make predictions about similarity
relations between stimuli

eWe can test those against neuroimaging data
oln principle we don’t even have to care where
the effects happen in the brain

poldracklab.org



Representational similarity analysis
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Davis & Poldrack, 2013
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Representational analysis using fMRI

0.9

. human

Kriegeskorte et al., 2008
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Typicality

e Some birds are “birdier” than others
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Typicality

Dimension 2: Predacity

Dimension 1: Size

After Smith, Shoben, & Rips (1974) Photos via http://www.birdphotography.com/
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http://www.birdphotography.com/

Typicality is highly unconstrained

o May reflect:
e Average similarity to other category members
e Similarity to idealized members

e Caricature effects

e Can we find a neural signature that is related to
psychological typicality?

poldracklab.org



Computing neural typicality

O
=
O00O00EEEEOE0ON
O
N

B

OEEO0E0OEOROOOE

E0NOOEEEOOO0O0O

Davis & Poldrack, 2013, Cerebral Cortex
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Computing neural typicality

DISTANCE IS DEFINED AS THE CORRELATION
DISTANCE BETWEEN TWO BETA-SERIES
ACTIVATION PATTERNS

d, = [1 _ corr(/)’i,ﬁj)]/2
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Davis & Poldrack, 2013, Cerebral Cortex
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Computing neural typicality

DISTANCE IS DEFINED AS THE CORRELATION
DISTANCE BETWEEN TWO BETA-SERIES
ACTIVATION PATTERNS
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Davis & Poldrack, 2013, Cerebral Cortex
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Computing neural typicality

DISTANCE IS DEFINED AS THE CORRELATION
DISTANCE BETWEEN TWO BETA-SERIES
ACTIVATION PATTERNS

d, = [1 _ corr(/)’i,ﬁj)]/2

OO0O0O00EEEEOEO0Om
N

SIMILARITY IS AN EXPONENTIAL FUNCTION OF
THE DISTANCE BETWEEN TWO
B. REPRESENTATIONS
J

Sij = eXp(_dij)
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Davis & Poldrack, 2013, Cerebral Cortex
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Computing neural typicality

DISTANCE IS DEFINED AS THE CORRELATION
DISTANCE BETWEEN TWO BETA-SERIES
BZ ACTIVATION PATTERNS

d, = [1 _ corr(/)’i,ﬁj)]/2

OO0O0O00EEEEOEO0Om

SIMILARITY IS AN EXPONENTIAL FUNCTION OF
THE DISTANCE BETWEEN TWO
B. REPRESENTATIONS
J

Sij = eXp(_dij)

OEEO0E0OEOROOOE
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TYPICALITY IS BASED ON THE SUM OF
i1H)=SS SIMILARITIES BETWEEN REPRESENTATIONS
typ(i = i OF AN OBJECT AND OTHER CATEGORY
. MEMBERS

Davis & Poldrack, 2013, Cerebral Cortex
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Testing the measure

e Is neural typicality associated with subjective
typicality ratings?

e Used atask in which subjective typicality and
physical feature resemblance are dissociated
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Category Structure (Davis & Love, 2010)
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Davis & Poldrack, 2013, Cerebral Cortex
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Task: Learning phase

<D
Does this bird live in nest Incorrect,
This One Lives in Nest A

150

Height (pixels)

100

50

1.5 seconds 7 ; A \
//é Neck Angle (degrees) \ S =

= O>—Cx =0
performed during
structural imaging

Davis & Poldrack, 2013, Cerebral Cortex
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Task: Categorization judgment

Does this bird live in nest \\ //
A,B, CorD?
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Task: Typicality judgment

How Typical is this bird
of Nest A (1-7)?

g
'
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performed outside scanner

Davis & Poldrack, 2013, Cerebral Cortex
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Single-trial fMRI response estimation
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(Mumford et al., 2012)

Design matrices for single-trial estimation
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ealized stimuli are judged most typical

= =" GAM fit to typicality ratings
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Alternative Predictions

e Neural similarity space will reflect
physical typicality (likelihood given
category)

e Neural similarity space will
reflect subjective typicality

N
N e
kg
MRt
N
N A

Wi

Obtained from behavior Obtained using GCM

Davis & Poldrack, 2013, Cerebral Cortex

poldracklab.o



Applying the neural typicality measure

e Correlate neural typicality with psychological and
physical predictions
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Neural typicality

Regions in which neural typicality and psychological
typicality are correlated
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Physical similarity

e Physical similarity

predictions obtained using
GCM

e Examined across multiple
evels of variance

e There werenoregionsin
which neural typicality or
activation reflected

physical typicality/

Davis & Poldrack, 2013, Cerebral Cortex
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Implications

e Activation patterns are isomorphic to mental
representations

e Subjective typicality reflected in neural typicality

e Univariate analysis would have told a very
different story
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How does MVPA compare to univariate analysis?

N Activation vector
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Decoding continuous variables

........... Time |
+12 | -14 | --oeeeememeeeeee.  —— s, +30 | -7 ) —
response variable
interval IS]
(3 secs) (mean 2.6 secs)
10 Potential gain 4
-5
8 Can we decode the
5 amount of gain or loss?
-20

Gain/loss matrix

Tom et al., 2007, Science
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The opportunistic nature of MVPA

Univariate Conjunction

Gain

Loss
I =nu‘=’u

Conjunction

Jimura & Poldrack, 2011, Neuropsychologia
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Differential sensitivity of MVPA

Gain Loss

Lateral

Medial

Jimura & Poldrack, 2011, Neuropsychologia
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MVPA is sensitive to univariate patterns

Condition Condition Condition Condition Condition Condition Condition Condition
N S N S N S N S N S N S N S N S
PPy, Py P —,  gp—— —— —— N — p—— ———m— P—— g—— —— qp—— PPy g —
N
g = + + + + + + 2
>
Observed Average Activation Subject's Deviation Voxels’ Deviations  Average Effect Subject’s Deviation  Voxels' Deviations Trial Level Noise/
Activation Pattern Across Subjects From Average From Average of Scariness From Average Effect From Average Effect Tral's Deviation
Activation Activation of Scariness of Scariness From Expected
Activation

Davis, Laroque et al., 2014, Neuroimage
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Voxelwise variability in univariate signals can drive MVPA

Similarity : Classification
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Davis, Laroque et al., 2014, Neuroimage
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MVPA is less sensitive to between-subject variability

Univariate Similarity Classification
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Davis, Laroque et al., 2014, Neuroimage
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Some things we have learned

o If classification results look too good, you have most likely done
something wrong

e Always confirm results by randomizing data from the very
beginning

e run many times to get null distribution, make sure it’s actually
at chance

e Crossvalidation with regression is very tricky (don’t use LOO)

e Differences between univariate and multivariate analyses can’t
be easily interpreted (Davis et al., 2014, Neuroimage)

e Trials orders must be separately randomized for each subject
(Mumford et al., 2014, Neuroimage)
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Conclusions

e Neuroimaging data CAN provide evidence relevant
to psychological questions

e Butinformal reverse inference is not the way!

e Machine learning methods provide the means to
decode and predict mental states from
neuroimaging data

e Multivariate analyses can establish isomorphisms
between neural and mental representations

poldracklab.org
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