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Can neuroimaging tell us anything about the mind?
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Can neuroimaging tell us anything about the mind?

“No amount of knowledge about the hardware of a computer 
will tell you anything serious about the nature of the software 
that the computer runs. In the same way, no facts about the 
activity of the brain could be used to confirm or refute some 
information-processing model of cognition." (Coltheart, 2004, p.
22)

Max Coltheart





“In response to images of Democratic 
candidates, men exhibited activity in the 
medial orbital prefrontal cortex, indicating 
emotional connection and positive 
feelings.”

“Images of Fred Thompson led to increased 
activity in the inferior frontal cortex, a brain 
structure associated with empathy.”

“Subjects who had an unfavorable view of 
John Edwards responded to pictures of him 
with feelings of disgust, evidenced by 
increased activity in the insula, a brain area 
associated with negative emotions.”
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Do you really love your iPhone?

• “Earlier this year, I carried out an fMRI experiment to find out whether iPhones 
were really, truly addictive, no less so than alcohol, cocaine, shopping or video 
games. In conjunction with the San Diego-based firm MindSign Neuromarketing, I 
enlisted eight men and eight women between the ages of 18 and 25. Our 16 
subjects were exposed separately to audio and to video of a ringing and vibrating 
iPhone...most striking of all was the flurry of activation in the insular cortex of the 
brain, which is associated with feelings of love and compassion. The subjects’ 
brains responded to the sound of their phones as they would respond to the 
presence or proximity of a girlfriend, boyfriend or family member.  In short, the 
subjects didn’t demonstrate the classic brain-based signs of addiction. Instead, 
they loved their iPhones.



To the Editor: 

“You Love Your iPhone. Literally,” by Martin Lindstrom (Op-Ed, Oct. 1), purports to show, using brain 
imaging, that our attachment to digital devices reflects not addiction but instead the same kind of 
emotion that we feel for human loved ones. 

However, the evidence the writer presents does not show this. 

The brain region that he points to as being “associated with feelings of love and compassion” (the 
insular cortex) is active in as many as one-third of all brain imaging studies. 

Further, in studies of decision making the insular cortex is more often associated with negative than 
positive emotions. 

The kind of reasoning that Mr. Lindstrom uses is well known to be flawed, because there is rarely a 
one-to-one mapping between any brain region and a single mental state; insular cortex activity 
could reflect one or more of several psychological processes. 

We find it surprising that The Times would publish claims like this that lack scientific validity. 

RUSSELL POLDRACK 
Austin, Tex., Oct. 3, 2011 

The writer is a professor of psychology and neurobiology at the University of Texas at Austin. His letter 
was signed by 44 other neuroscientists. 

http://www.nytimes.com/2011/10/01/opinion/you-love-your-iphone-literally.html
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Does reverse inference work?

Insula 
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Does reverse inference work?

Insula 
activitycraving

effort

pain

p(act|process)

p(process|act)

p(process|act) =   
  p(process)    p(act|process)

  p(act)
*
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Insula activation is weakly selective

Some voxels active in more than 20% of studies
Yarkoni et al., 2011
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Reverse inference

• Informal reverse 
inference provides 
relatively weak 
evidence

TICS, 2006
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Formalizing reverse inference

• How can we more formally test the predictive 
ability of fMRI? 

• Answer: statistical methods for prediction 

• Machine learning/statistical learning/pattern 
recognition
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Decoding mental states using machine learning

fMRI 
dataset

train to 
classify 
mental 
states

test 
accuracy of 

decoding on 
untrained 

data

}Cross-validation: 
•Train for each split of 
size k 
•Compute average 
predictive accuracy on 
left-out data



Haxby et al., 2001, Science

96% correct classification



Haynes et al., 2007, Current Biology

Train on 7 runs, 
test on 8th
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“60 Minutes”, January 4, 2009
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“60 Minutes”, January 4, 2009
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“60 Minutes”, January 4, 2009

“It's tough to make predictions, especially about the future.” - Yogi Berra
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Predicting mental states across people

• Existing work has primarily examined ability to 
predict mental states using a classifier trained on 
data from the same person 

• For many applications of interest, such training 
data would not exist for the individual being 
tested 

• Can we accurately generalize to new individuals?
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Predicting risky decisions

Balloon Analog 
Risk Task (BART)

Helfinstein et al, 2014, PNAS
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Crossvalidation across subjects

18 subjects

18 subjects

18 subjects

18 subjects

18 subjects

18 subjects

Train on 5 folds

Test on left-out fold

Helfinstein et al, 2014, PNAS

Randomly assign to folds 50 times and average results
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Classification accuracy for risk-taking

Helfinstein et al, 2014, PNAS

Whole-brain  
classification: 

72%  
p<0.002 under  
null hypothesis  

(by randomization)

Searchlight classification accuracy
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Classifying based on activity balance

Helfinstein et al, 2014, PNAS

Logistic regression:  
67% accuracy

Blue: Pre-Pump > Pre-Cashout 
Red: Pre-Cashout > Pre-Pump
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Decoding different mental states

• Can we predict what task a subject was 
performing, using a classifier trained on other 
people? 

• 8 tasks, 130 subjects total



Task # Task description # subjects Design type

1 Risky decision making (Balloon analog risk task) (Stover et al., in 
preparation)

16 Event-related

2 Probabilistic classification (no feedback) (Aron et al., 
unpublished)

20 Event-related

3 Rhyme judgments on pseudowords (Xue et al., unpublished) 13 Event-related

4 Working memory (tone counting) (Foerde et al., 2006) 17 Event-related

5 50/50 gain-loss gamble decisions (Tom et al., 2007) 16 Blocked

6 Living/nonliving decision on mirror-reversed words (Poldrack et 
al., unpublished)

14 Blocked

7 Reading pseudowords aloud (Xue et al., submitted) 19 Event-related

8 Response inhibition (successful stopping) (Aron & Poldrack, 2006) 15 Event-related

Poldrack, Halchenko, & Hanson, 2009, Psychological Science



Tr
ue

 ta
sk

Task chosen by classifier

 Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 
Task 1 87.5 6.0 0.0 0.0 6.0 0.0 0.0 0.0 
Task 2 0.0 90.0 0.0 0.0 0.0 0.0 5.0 5.0 
Task 3 8.0 23.0 61.5 0.0 0.0 8.0 0.0 0.0 
Task 4 0.0 0.0 0.0 82.4 0.0 0.0 0.0 18.0 
Task 5 0.0 38.0 0.0 0.0 43.8 18.2 0.0 0.0 
Task 6 0.0 28.0 0.0 0.0 0.0 71.4 0.0 0.0 
Task 7 0.0 11.0 0.0 0.0 0.0 0.0 84.0 5.0 
Task 8 0.0 0.0 7.0 0.0 0.0 0.0 27.0 63.0 
 

Task chosen by classfier

Tr
ue

 ta
sk

Analysis Crossvalidated 
accuracy

# of voxels 
included

Union of all in-mask voxels across 
subjects (one-vs-one)

74% 417,231

Intersection of in-mask voxels across 
subjects (one-vs-many)

80.8% 214,940

Positively activated voxels only 
(across all 130 subjects, t > 3, p<.
002) (one-vs-many)

74.6% 83,825

Deactivated voxels only 
 (t < -3, p<.002) (one-vs-many)

50.8% 23,736

Accuracy above 18.5% is significant at p<.05 by randomization

Poldrack, Halchenko, & Hanson, 2009, Psychological Science
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Larger-scale decoding

26 tasks, 482 images from 338 subjects 
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Classification results

2 10 20 50 100 200

Whole-brain: 
47% accuracy

Poldrack et al., 2013, Frontiers in Neuroinformatics
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Predicting individual differences from fMRI

• In neuroscience, correlations are often colloquially 
described as “prediction”, but true prediction requires 
generalization to new samples 

• The ability to predict quantitative variables for new 
individuals can be tested using crossvalidation
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Leave-one-out crossvalidation
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Leave-one-out crossvalidation
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each fold
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LOO CV R2 = 0.586	


mean new sample R2 =0.591 
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Correlation ≠ Prediction

•11 datapoints sampled from 
normal distribution (no 
correlation)	


•one outlier	


•full-sample R2 =0.785	


•LOO CV R2 = 0.025	


!

•Highlights importance of 
examining the raw data!
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“The present analysis shows that hemodynamic activity within 
the brain prospectively predicted rearrest in an offender sample.”



Aharoni et al., 2013



http://www.russpoldrack.org/2013/04/how-well-can-we-predict-future-criminal.html

Integrated Brier scores: 
Reference: 0.214 
dACC: 0.207

Prediction error using crossvalidation

https://github.com/poldrack/criminalprediction

http://www.russpoldrack.org/2013/04/how-well-can-we-predict-future-criminal.html
https://github.com/poldrack/criminalprediction
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Cohen et al., 2010, Frontiers in 
Human Neuroscience
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p<.05 (by randomization)Variables tested: 
Age: subject’s age 
SSRT: stop signal reaction time 
GoRT: go reaction time 
SDRT: std. dev. of go reaction time

Predicting individual differences from fMRI
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Meta-analytic decoding

• All of the results to this point were based on fMRI 
data from individual subjects 

• Can we push this even further? 

• Can we use meta-analytic data from papers?
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Activation locations

} Brain activity is reported in 
(somewhat) standardized format
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Creating meta-analytic brain maps
• Automated Coordinate Extraction (Yarkoni et al, 2011, Nature Methods) 

• Automatically extracts activation tables from fMRI papers for 17 journals 

• Current database has 4,393 papers (with full text) 

• Good accuracy 

• 84% sensitivity, 97% specificity against SumsDB manual database 

• Meta-analytic maps created for each paper 

• 10mm sphere placed at each focus
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57 

12 
33 
24 
42 
24 

57 
21 
15 
6 
-3 

X    Y    Z Automated 
coordinate 
extraction



poldracklab.org

Neurosynth.org
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Automated meta-analysis

Yarkoni et al., 2011, Nature Methods
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Automated meta-analysis

Yarkoni et al., 2011, Nature Methods
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Classification of cognitive states

• Given 2+ terms, can determine which is most likely given the 
data 

• Naive Bayes classifier: assumes that all features (voxels) are 
independent; selects the most probable class 

• Can apply this to any activation map—studies, individual 
subjects, etc.

Yarkoni et al, 2011, Nature Methods
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Classification of new studies

• Cross-validated classification of all studies in 
database 

• Select 25 high-frequency terms 

• Pairwise classification: how well can we 
distinguish between each pair of terms?

Yarkoni et al, 2011, Nature Methods



Yarkoni et al, 2011, Nature Methods
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Using classification to understand mental structure

Lenartowicz et al, 2010, Topics in Cognitive Science

WM: working memory 
TS: Task switching 
RS: Response selection 
RI: Response inhibition 
CC: Cognitive control 
BI: Bilingual language
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What about individual subjects?

• Can we identify cognitive states in individual 
(new) subjects? 

• Difficult, because: 

• No opportunity for training 

• Data is of a fundamentally different type 

• Tested in samples of subjects from working memory, 
emotion, and pain studies 

• Can we predict source study type?

Yarkoni et al, 2011, Nature Methods
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Classifying individual subjects

Yarkoni et al, 2011, Nature Methods
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Automating reverse inference

Helfinstein et al, 2014, PNAS
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Neurovault + Neurosynth = automated reverse inference 

Gorgolewski et al., submitted
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Summary: Decoding mental states

• We can decode mental states across individuals 

• This can provide insights into the similarity space 
of mental processes 

• And ultimately inform our ontology of mental 
processes
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•Psychological theories rarely make clear 
predictions about activation 
•But they often make predictions about similarity 
relations between stimuli 
!

•We can test those against neuroimaging data 
•In principle we don’t even have to care where 
the effects happen in the brain

Decoding representational structure using fMRI
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Representational similarity analysis
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Davis & Poldrack, 2013
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Representational analysis using fMRI

Kriegeskorte et al., 2008
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Typicality

• Some birds are “birdier” than others
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Typicality

After Smith, Shoben, & Rips (1974)              Photos via http://www.birdphotography.com/
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Dimension 1: Size

http://www.birdphotography.com/
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Typicality is highly unconstrained

• May reflect: 

• Average similarity to other category members 

• Similarity to idealized members 

• Caricature effects 

!

• Can we find a neural signature that is related to 
psychological typicality?
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Computing neural typicality

β1
β2

Davis & Poldrack, 2013, Cerebral Cortex

...

βj
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Computing neural typicality

€ 

dij = 1− corr(βi,β j )[ ] /2

DISTANCE IS DEFINED AS THE CORRELATION 
DISTANCE BETWEEN TWO BETA-SERIES 

ACTIVATION PATTERNS

β1
β2

Davis & Poldrack, 2013, Cerebral Cortex

...

βj
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Computing neural typicality

€ 

dij = 1− corr(βi,β j )[ ] /2

DISTANCE IS DEFINED AS THE CORRELATION 
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Computing neural typicality

€ 

dij = 1− corr(βi,β j )[ ] /2

DISTANCE IS DEFINED AS THE CORRELATION 
DISTANCE BETWEEN TWO BETA-SERIES 

ACTIVATION PATTERNS

β1
β2

€ 

sij = exp(−dij )

SIMILARITY IS AN EXPONENTIAL FUNCTION OF 
THE DISTANCE BETWEEN TWO 

REPRESENTATIONS

Davis & Poldrack, 2013, Cerebral Cortex
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Computing neural typicality

€ 

dij = 1− corr(βi,β j )[ ] /2

DISTANCE IS DEFINED AS THE CORRELATION 
DISTANCE BETWEEN TWO BETA-SERIES 

ACTIVATION PATTERNS

β1
β2

€ 

sij = exp(−dij )

SIMILARITY IS AN EXPONENTIAL FUNCTION OF 
THE DISTANCE BETWEEN TWO 

REPRESENTATIONS

typ(i | J ) = Sij
j∈J
∑

TYPICALITY IS BASED ON THE SUM OF 
SIMILARITIES BETWEEN REPRESENTATIONS !

OF AN OBJECT AND OTHER CATEGORY 
MEMBERS

Davis & Poldrack, 2013, Cerebral Cortex

...

βj

d1,2

d1,j



poldracklab.org

Testing the measure

• Is neural typicality associated with subjective 
typicality ratings? 

!

• Used a task in which subjective typicality and 
physical feature resemblance are dissociated
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Category Structure (Davis & Love, 2010)
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Task: Learning phase

Does this bird live in nest
A or C ? 

Incorrect, 
This One Lives in Nest A 

+

1.5 seconds

6.5 seconds3.5 seconds

A. Learning

B. Test (Scanned)

Does this bird live in nest
A, B,  C, or D ? 

How Typical is this bird
of Nest A  (1-7)? 

C. Typicality Rating

Thank You!

1.5 seconds

performed during  
structural imaging
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Task: Categorization judgment

Does this bird live in nest
A or C ? 

Incorrect, 
This One Lives in Nest A 

+

1.5 seconds

6.5 seconds3.5 seconds

A. Learning

B. Test (Scanned)

Does this bird live in nest
A, B,  C, or D ? 

How Typical is this bird
of Nest A  (1-7)? 

C. Typicality Rating

Thank You!
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Davis & Poldrack, 2013, Cerebral Cortex
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Task: Typicality judgment

Does this bird live in nest
A or C ? 

Incorrect, 
This One Lives in Nest A 

+

1.5 seconds

6.5 seconds3.5 seconds

A. Learning

B. Test (Scanned)

Does this bird live in nest
A, B,  C, or D ? 

How Typical is this bird
of Nest A  (1-7)? 

C. Typicality Rating

Thank You!
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performed outside scanner

Davis & Poldrack, 2013, Cerebral Cortex
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Single-trial fMRI response estimation
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Idealized stimuli are judged most typical
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Alternative Predictions

• Neural similarity space will reflect 
physical typicality (likelihood given 
category)
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• Neural similarity space will 
reflect subjective typicality

Obtained from behavior
Davis & Poldrack, 2013, Cerebral Cortex
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Applying the neural typicality measure

• Correlate neural typicality with psychological and 
physical predictions
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Neural typicality 

Regions in which neural typicality and psychological 
typicality are correlated
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Davis & Poldrack, 2013, Cerebral Cortex
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Univariate typicality effect
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Regions in which univariate activation 
 and psychological typicality are correlated

Davis & Poldrack, 2013, Cerebral Cortex
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Physical similarity

• Physical similarity 
predictions obtained using 
GCM 

• Examined across multiple 
levels of variance 

• There were no regions in 
which neural typicality or 
activation reflected 
physical typicality/
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Height
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Davis & Poldrack, 2013, Cerebral Cortex
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Implications

• Activation patterns are isomorphic to mental 
representations 

• Subjective typicality reflected in neural typicality 

• Univariate analysis would have told a very 
different story
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How does MVPA compare to univariate analysis?

Remembered

Activation vector

Forgotten

R

F
R

R

R

R

R R

R

F

F

F

F

F

F

Searchlight

R1 R2 Rn F1 F2 Fn... ...

Mean

Univariate

Demeaned pattern

Remembered

Activation vector

Forgotten

R

F
R

R

R

R

R R

R

F

F

F

F

F

F
Classification

accuracyMVPA



poldracklab.org

Decoding continuous variables

Can we decode the 
amount of gain or loss?

Tom et al., 2007, Science
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The opportunistic nature of MVPA

Please cite this article in press as: Jimura, K., & Poldrack, R.A. Analyses of regional-average activation and multivoxel pattern information tell
complementary stories. Neuropsychologia (2011), doi:10.1016/j.neuropsychologia.2011.11.007
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NSY-4320; No. of Pages 9
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Fig. 1. Brain regions that showed significant effects in univariate analysis (a–c) and MVPA (d–f) were color coded and mapped onto a 3D atlas of the brain (P < .05 corrected).
Conjunctions of gain and loss effects in MVPA and univariate analysis are shown in the bottom. Conjunctions of MVPA and univariate analysis for gain and loss effects are
shown  in panels g–i. L, left; R, right.

a summary of the results is presented in Table 5. For sensitivity,
many of the voxels extracted in the MVPA were characterized as
M+ (55.8% for gain; 55.7% for loss), whereas a smaller proportion of
the voxels were U+ for univariate analysis (7.4% for gain; 2.0% for
loss), again suggesting MVPA is more sensitive overall. For consis-
tency, a fair number of voxels identified by univariate analysis were
classified as C+ (19.6% for gain; 33.0% for loss). These rates suggest

a significant level of consistency in those voxels identified by the
overall analyses, compared to the chance level (5%). On the other
hand, in the brain region identified by MVPA, a relatively smaller
number of voxels showed consistency (7.7% for gain; 7.1% for loss),
suggesting that the relative consistency is unidirectional: voxels
identified by the univariate analysis are likely to be also identified
by the MVPA, but not vice versa.

Table 5
The voxels showing significant conjunction effect in univariate (Fig. 1a–c and Table 1) and MVPA (Fig. 1d–f Table 2) were classified according to consistency and sensitivity.
Each  voxel was  classified into MVPA sensitive (M+), univariate sensitive (U+), or sensitivity not differentiated (S=). If the voxel showed consistent results in MVPA and
univariate analysis, it was  characterized as C+, and C− otherwise. The entries in each cell reflect the number of voxels for which that pattern held in each analysis.

Analysis Effect M+  S= U+

Univariate Gain C+ 2 (0.4%) 88 (16.2%) 16 (3.0%)
C−  0 (0.0%) 412 (76.0%) 24 (4.4%)

Loss  C+ 4 (0.7%) 168 (31.0%) 7 (1.3%)
C−  6 (1.1%) 353 (65.1%) 4 (0.7%)

MVPA  Gain C+ 739 (3.5%) 882 (4.2%) 0 (0.0%)
C− 10,959 (52.3%) 8362 (39.9%) 0 (0.0%)

Loss C+ 977 (4.7%) 495 (2.4%) 5 (0.0%)
C−  10,670 (51.0%) 8787 (42.0%) 8 (0.0%)

Jimura & Poldrack, 2011, Neuropsychologia
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Differential sensitivity of MVPA

Please cite this article in press as: Jimura, K., & Poldrack, R.A. Analyses of regional-average activation and multivoxel pattern information tell
complementary stories. Neuropsychologia (2011), doi:10.1016/j.neuropsychologia.2011.11.007
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Fig. 2. Voxel-wise sensitivity maps for gain (a) and loss (b) effects. Voxels showing a greater effect in MVPA relative to the univariate analysis (P < .05 uncorrected) were
characterized as M+,  and the opposite pattern (univariate is larger than MVPA) was  characterized as U+. M+  and U+ voxels were then color-coded in hot and cold colors,
respectively, and mapped onto 3D brain atlas. L, left; R, right.

Group-level statistics were examined between the two  analyses
for those clusters that involved U+ or M+  voxels (i.e., the clusters
seen in the top panels of Fig. 2), in order to examine the rela-
tion between analyses at a voxelwise level. Fig. 3 plots group-level
t-values for MVPA versus univariate analyses across voxels after
averaging over subjects. Note that these regions are different from
those in Tables 1–3,  as they are defined by the sensitivity analysis.
Interestingly, most of the regions showed a relatively strong linear
relationship between MVPA and univariate estimates across vox-
els, suggesting that the pattern across voxels within the cluster is
similar for both analyses even if sensitivity differs.

3.3.3. Control univariate analyses
In order to examine the robustness of the comparisons

above, we performed two types of control univariate analyses
(Figs. S1 and S2; see Supplementary material). We  first performed
a “searchlight univariate” analysis, where the mean levels of acti-
vation were calculated across voxels within each searchlight, and
then standard linear regression coefficients were calculated, using
the identical dataset for MVPA. The results of this analysis were
consistent with the original univariate analysis. We  also performed
another type of control analysis, where the mean level of activation
within each searchlight was subjected to SVR as a single feature,
thus forcing the classifier to make its predictions based on overall
activation rather than multi-voxel patterns. This analysis showed
weaker significance levels, but the results are still consistent with

those in original univariate analysis as well as the searchlight uni-
variate analysis.

4. Discussion

The current study compared MVPA and univariate analysis by
examining parametric effects of potential gains and losses in a
gambling task. Conjunction of the two  analyses revealed relatively
small commonality in significant results across the brain with an
exception in a focal region in ventral striatum. Voxelwise com-
parisons showed that MVPA was  generally more sensitive to both
gain and loss effects across the cortex, whereas univariate anal-
ysis was  more sensitive in some subcortical regions. Correlation
analyses across subjects revealed a subset of regions where the
two analyses showed similar patterns across subjects, while vox-
elwise analysis within clusters of differential sensitivity showed
that MVPA and univariate analysis exhibited similar patterns of
response across voxels. These results demonstrate that the infer-
ences drawn from univariate analyses are likely to be consistent
with MVPA, but MVPAs have the potential to uncover additional
regions that are relevant to the task.

4.1. Relevance to cognitive architecture

A critical question is whether and how univariate and MVPAs
might provide divergent insights into the organization of cognitive
(as opposed to neural) function. One way in which neuroimaging
is often used to inform cognitive theories is through a dissociation

Jimura & Poldrack, 2011, Neuropsychologia
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MVPA is sensitive to univariate patterns

Davis, Laroque et al., 2014, Neuroimage
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Voxelwise variability in univariate signals can drive MVPA

Davis, Laroque et al., 2014, Neuroimage

Similarity Classification
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MVPA is less sensitive to between-subject variability

Univariate Similarity Classification

Davis, Laroque et al., 2014, Neuroimage
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Some things we have learned
• If classification results look too good, you have most likely done 

something wrong 

• Always confirm results by randomizing data from the very 
beginning  

• run many times to get null distribution, make sure it’s actually 
at chance 

• Crossvalidation with regression is very tricky (don’t use LOO) 

• Differences between univariate and multivariate analyses can’t 
be easily interpreted (Davis et al., 2014, Neuroimage) 

• Trials orders must be separately randomized for each subject 
(Mumford et al., 2014, Neuroimage)
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Conclusions

• Neuroimaging data CAN provide evidence relevant 
to psychological questions 

• But informal reverse inference is not the way! 

• Machine learning methods provide the means to 
decode and predict mental states from 
neuroimaging data 

• Multivariate analyses can establish isomorphisms 
between neural and mental representations
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