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this implementation. Full technical details are presented in
the Appendix.

3.1. Fundamentals of RL: temporal-difference learning in
actor–critic models

RL problems comprise four elements: a set of world
states; a set of actions available to the agent in each state;
a transition function,which specifies the probability of tran-
sitioning from one state to another when performing each
action; and a reward function, which indicates the amount
of reward (or cost) associated with each such transition.
Given these elements, the objective for learning is to dis-
cover a policy, that is, a mapping from states to actions,
that maximizes cumulative long-term reward.4

In actor–critic implementations of RL, the learning
agent is divided into two parts, an actor and a critic, as
illustrated in Fig. 2A (see, e.g., Barto, Sutton, & Anderson,
1983; Houk et al., 1995; Joel et al., 2002; Suri, Bargas, &
Arbib, 2001). The actor selects actions according to a mod-
ifiable policy (p(s) in the figure), which is based on a set of

weighted associations from states to actions, often called
action strengths. The critic maintains a value function
(V(s)), associating each state with an estimate of the cumu-
lative, long-term reward that can be expected subsequent
to visiting that state. Importantly, both the action
strengths and the value function must be learned based
on experience with the environment. At the outset of
learning, the value function and the actor’s action
strengths are initialized, for instance uniformly or ran-
domly, and the agent is placed in some initial state. The ac-
tor then selects an action, following a rule that favors high-
strength actions but also allows for exploration (see
Appendix, Eq. (1)). Once the resulting state is reached
and its associated reward is collected, the critic computes
a temporal-difference prediction error (denoted d in the fig-
ure; see also Eq. (2)). Here, the value that was attached
to the previous state is treated as a prediction of (1) the re-
ward that would be received in the successor state (R(s)),
plus (2) the value attached to that successor state. A posi-
tive prediction error indicates that this prediction was too
low, meaning that things turned out better than expected.
Of course, things can also turn out worse than expected,
yielding a negative prediction error.

The prediction error is used to update both the value at-
tached to the previous state and the strength of the action
that was selected in that state (see Eqs. (3) and (4)). A po-
sitive prediction error leads to an increase in the value of
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Fig. 2. An actor–critic implementation. (A) Schematic of the basic actor–critic architecture. R(s): reward function; V(s): value function; d: temporal-
difference prediction error; p(s): policy, determined by action strengths W. (B) An actor–critic implementation of HRL. o: currently controlling option, Ro(s):
option-dependent reward function. Vo(s): option-specific value functions; d: temporal-difference prediction error; po(s): option-specific policies,
determined by option-specific action/option strengths. (C) Putative neural correlates to components of the elements diagramed in panel A. (D) Potential
neural correlates to components of the elements diagramed in panel C. Abbreviations: DA: dopamine; DLPFC: dorsolateral prefrontal cortex, plus other
frontal structures potentially including premotor, supplementary motor and pre-supplementary motor cortices; DLS, dorsolateral striatum; HT+:
hypothalamus and other structures, potentially including the habenula, the pedunculopontine nucleus, and the superior colliculus; OFC: orbitofrontal
cortex; VS, ventral striatum.

4 It is often assumed that the utility attached to rewards decreases with
the length of time it takes to obtain them, and in such cases the objective is
to maximize the discounted long-term reward. As reflected in the Appendix,
our implementation assumes such discounting. For simplicity, however,
discounting is ignored in the main text.
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to visiting that state. Importantly, both the action
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and its associated reward is collected, the critic computes
a temporal-difference prediction error (denoted d in the fig-
ure; see also Eq. (2)). Here, the value that was attached
to the previous state is treated as a prediction of (1) the re-
ward that would be received in the successor state (R(s)),
plus (2) the value attached to that successor state. A posi-
tive prediction error indicates that this prediction was too
low, meaning that things turned out better than expected.
Of course, things can also turn out worse than expected,
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The prediction error is used to update both the value at-
tached to the previous state and the strength of the action
that was selected in that state (see Eqs. (3) and (4)). A po-
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Fig. 2. An actor–critic implementation. (A) Schematic of the basic actor–critic architecture. R(s): reward function; V(s): value function; d: temporal-
difference prediction error; p(s): policy, determined by action strengths W. (B) An actor–critic implementation of HRL. o: currently controlling option, Ro(s):
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hypothalamus and other structures, potentially including the habenula, the pedunculopontine nucleus, and the superior colliculus; OFC: orbitofrontal
cortex; VS, ventral striatum.

4 It is often assumed that the utility attached to rewards decreases with
the length of time it takes to obtain them, and in such cases the objective is
to maximize the discounted long-term reward. As reflected in the Appendix,
our implementation assumes such discounting. For simplicity, however,
discounting is ignored in the main text.
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!
1. What should be learned?!
!
2. Do people learn it?!
!
3. How? !



Alec Solway   Carlos Diuk 

Solway et al., PLoS Comp. Biol., 2014



Alec Solway   Carlos Diuk 

Solway et al., PLoS Comp. Biol., 2014



Alec Solway   Carlos Diuk 

Solway et al., PLoS Comp. Biol., 2014



Alec Solway   Carlos Diuk 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Pr !"#" !"#$% = Pr !"#" !"#$%,! Pr! ! !"#$%
!∈!

, 

Solway et al., PLoS Comp. Biol., 2014



Model Evidence   

Se
ar

ch
 T

im
e

Codelength

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Pr !"#" !"#$% = Pr !"#" !"#$%,! Pr! ! !"#$%
!∈!

, 
Solway et al., PLoS Comp. Biol., 2014

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Pr !"#" !"#$% = Pr !"#" !"#$%,! Pr! ! !"#$%
!∈!

, 



Solway et al., PLoS Comp. Biol., 2014



Fortunato, Physics Reports, 2010

Zachary’s karate club

Santa Fe Institute 
collaborations

Lusseau’s bottlenose dolphins



Simsek, Wolfe & Barto, 2005



!
1. What should be learned?!
!
2. Do people learn it?!
!
3. How? !



  Carlos Diuk     DebbieYee 

Solway et al., PLoS Comp. Biol., 2014



  Carlos Diuk     DebbieYee 

Solway et al., PLoS Comp. Biol., 2014



  Carlos Diuk     DebbieYee 

Solway et al., PLoS Comp. Biol., 2014



S G

B

2200

2300

2400

2500

2600

2700

2800

2900

Reject�ĸƌŵ

ZĞ
ƐƉ
ŽŶ

ƐĞ
�d
ŝŵ

Ğ

  Carlos Diuk     DebbieYee 

Solway et al., PLoS Comp. Biol., 2014



!
1. What should be learned?!
!
2. Do people learn it?!
!
3. How? !



!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Pr !"#" !"#$% = Pr !"#" !"#$%,! Pr! ! !"#$%
!∈!

, 



Anna Schapiro 

Schapiro et al., Nature Neurosci, 2013



-0.36
1.00

-0.360.66
1.00
-0.36

1.00
0.66
-0.36

Schapiro et al., Nature Neurosci, 2013



Schapiro et al., Nature Neurosci, 2013



Schapiro et al., Nature Neurosci, 2013



Time

Schapiro et al., Nature Neurosci, 2013



0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y 
of

 p
ar

se

   Cluster transition
     parse  

Experiment 1 

All trials
Hamiltonian
paths

0

0.1

0.2

0.3

0.4

Experiment 2

Other parse    Cluster transition
     parse  

Other parse

Schapiro et al., Nature Neurosci, 2013



Schapiro et al., Nature Neurosci, 2013

+ HC



1.0

0.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Su
cc

es
so

r R
ep

re
se

nt
at

io
n 

Co
rr

el
at

io
n

0.38

0.18

0.36

0.34

0.32

0.30

0.28

0.26

0.24

0.22

0.20

Pa
tt

er
n 

Co
rr

el
at

io
n

Diuk et al., in prep.

  Carlos Diuk      

+ HC



Schapiro et al., 2013.; Rogers & McClelland, 2003

C
ur

re
nt

 S
tim

ul
us

N
ex

t S
tim

ul
us



Model Evidence   

Se
ar

ch
 T

im
e

Codelength

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Pr !"#" !"#$% = Pr !"#" !"#$%,! Pr! ! !"#$%
!∈!

, 

Solway et al., PLoS Comp. Biol., 2014



cf. Dayan, 1993



Rosvall & Bergstrom, PNAS, 2008



Mahadevan & Maggioni, 2005



Stachenfeld, Botvinick & Gershman, NIPS, 2014



Olshausen & Field, Nature, 1996



Botvinick & Plaut, Psych Review, 2004



Conclusions!

•  The scaling problem in RL

•  Hierarchy can help

•  HRL in the brain

•  The need for good representations 

•  Model-free versus model-based HRL

•  Task decomposition, bottlenecks, community detection

•  Prospective coding and structure discovery

•  Hierarchy as compression
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