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Why Should Economists Study the Brain?

The hope: better understanding of how features of choice
situations are coded, as basis for further mental operations

Standard approach in economics: seek to explain observed
choices as those preferred by the decisionmaker, from among the
choices available on the given occasion

neglected issue: ways in which the subjective representation of
the decision situation, upon which the decision must be based,
may differ from objective characteristics

— even “behavioral economists” often seek to explain
anomalous behavior in terms of non-standard preferences over
actual outcomes
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Why Should Economists Study the Brain?

Instead there may be advantages to understanding some
behavioral anomalies as reflecting decisions based on imprecise
coding of the choice situation

1 may provide simpler, more intuitive explanation than appeal to
complex form of preferences

2 the kinds of discrepancies between subjective representation and
objective reality that must be invoked are often analogous to
well-documented features of perception in sensory domains

A traditional objection: allowance for “subjective factors” means
a theory with no predictive power

— but measurement of neural activity can help to discipline
theory development
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Example 1: Stochastic Choice

Standard rational choice theory implies that actions chosen
should be deterministic functions of a (sufficiently complete)
description of the choice situation

Yet experiments show that subjects’ choices between particular
options involve a random element: same subject need not
choose the same way, if same options are repeated (sometimes
only minutes later)

— but probability of choice often varies systematically with
characteristics
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Mosteller and Nogee (1951)

AN EXPERIMENTAL MEASUREMENT OF UTILITY 

was determined (these are rounded val- 
ues). These, and the arbitrarily defined 
points [U(oo) = o utiles and U(-5S) = 
- i utiles] can be connected by straight- 
line segments to form the utility curve of 
a subject. In Figure 3, illustrations of the 
utility curves are given for a few sub- 
jects. For reasons of scale we have shown 
values for only a few different utile po- 
sitions. Logarithmic scales would be 
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FIG. 2.-In this graph the data of Table 8 for subject B-I, hand 5522i, are plotted to show how the in- 
difference point is actually obtained. 

somewhat misleading because some in- 
terest attaches to the curvature. 

It was not possible to secure utility 
curves as complete as those in Figure 3 
for all subjects. The behavior of one sub- 
ject in the pilot study was so erratic that 
no utility curve at all could be derived 
for him. For two student subjects in the 
experiment it was possible to derive only 
a short section of the curve. Their in- 
difference points for the high hands (i.e., 
those in which the probability of winning 
was small and which gave the values for 
IO, 20, and ioi utiles) were so high that 
the experimenters felt they could not af- 

ford to make the offers necessary to get 
the subjects to choose to play (if such 
offers existed). 

There was nothing in the experimental 
procedure which coerced any subject to 
play at any time. It was possible for a 
subject to take his dollar at the beginning 
of a session and not play, thus assuring 
himself of $i.oo. It is interesting that this 
never happened. 

One subject showed markedly super- 
stitious behavior toward one hand. He 
seldom played against it for any of the 
offers made, even though he would ac- 
cept the same, or even smaller, offers 
against a hand which was less likely to be 
beaten. When asked about this after the 
project was completed, the subject said 
that he had been aware of his behavior 
but that he simply felt that the particu- 
lar hand was unlucky for him and that he 
"just didn't like it." 

In Table 9 are the indifference offers 
corresponding to each utility. When 
these are graphed, a rough utility curve 

This content downloaded from 130.132.173.205 on Wed, 15 Jan 2014 18:21:44 PM
All use subject to JSTOR Terms and Conditions
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Explaining Stochastic Choice

Stochasticity of choice between goods often explained by
postulating randomness of preferences (e.g., McFadden, 1974)

— but less plausible as an explanation of random choice
between lotteries

Alternative possibility: randomness of subjective representation
on the basis of which judgment of value is made

In fact, such randomness of responses is a common feature of
perceptual judgments
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Stochasticity of Perceptual Judgments

Long experimental literature in psychophysics shows that
discrimination between stimuli is both imprecise and
probabilistic:

probability of correct discrimination of relative brightness,
direction of motion, etc., increasing function of objective
difference

(“psychometric function”)
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Motion Discrimination: Moving-Dot Stimuli

Different possible degrees of “motion strength.”

Woodford (Columbia) Psychophysics of Choice September 2014 8 / 61



Motion Discrimination: Shadlen et al. (2007)

10.2 The Diffusion-to-Bound Framework 209
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Figure 10.1 Behavioral data from one monkey performing reaction time (RT) version
of the direction discrimination task. A. Psychometric function. The probability of a
rightward direction judgment is plotted as a function of motion strength. Positive co-
herence refers to rightward motion and negative coherence to leftward motion. B. Effect
of motion strength on RT. Mean RT for correct trials is plotted as a function of motion
strength as in A. Error bars are smaller than the symbols. The solid lines show a com-
bined diffusion model fit to the choice and RT data.

is related to the direction and strength of the motion stimulus, but in any one
moment, the evidence is a random number. Over time, these random momen-
tary evidence values are accumulated, giving rise to a random trajectory. The
decision process terminates when the trajectory encounters a bound at ±A. The
particular bound that is crossed determines the choice, and the time taken to
reach that bound determines the decision time. The important idea is that a
single mechanism explains both which choice is made and how long it takes to
make it.

These predictions can be described by relatively simple analytical equations,
which give rise to the fits in figure 10.1. The psychometric function describes
the probability of choosing the positive direction as a function of the motion
strength, C:

P+ =
1

1 + e−2kCA
(10.1)

where k and A are fitted parameters. The direction of motion is indicated by the
sign of C. The probability of choosing the positive motion direction is P+. We
assume that the subjects are unbiased. Therefore, when C = 0, P+ = 1− P+ =
1
2 .

The chronometric function describes the reaction time as a sum of decision
and nondecision times. The decision time function shares the same parameters

horizontal axis: “motion strength” to the right, moving-dot stimulus
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Stochasticity of Perceptual Judgments

Conventional interpretation: each (objective) stimulus is
associated with a probability distribution of possible subjective
representations (“percepts”)

stochastic errors in classification attributed to overlap of these
distributions

“signal detection theory” (e.g., Green and Swets, 1966) seeks to
infer the distributions of subjective representations needed to
account for behavioral data
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Signal Detection Theory

low overlap ⇒  probability of error near zero

high overlap ⇒  probability of error near 50%
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Stochasticity of Perceptual Judgments

Conventional interpretation: each (objective) stimulus is
associated with a probability distribution of possible subjective
representations (“percepts”)

stochastic errors in classification attributed to overlap of these
distributions

“signal detection theory” (e.g., Green and Swets, 1966) seeks to
infer the distributions of subjective representations needed to
account for behavioral data

Originally purely an “as-if” hypothesis; but now confirmed by
neural measurements
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Neurons in Area MT: Britten et al. (1992)

Histograms of number of spikes in MT neuron.
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Neurons in Area MT: Britten et al. (1992)

“Neurometric” and “psychometric” curves compared.
Woodford (Columbia) Psychophysics of Choice September 2014 14 / 61



Explaining Stochastic Choice

Does it matter whether we suppose that stochastic choice
results from randomness of subjective coding of the choice
options, or randomness in preferences?

1 interpreting randomness of choice as resulting from a noisy
decision process implies that degree of randomness should vary
depending on factors that affect available processing capacity

— e.g., should expect speed-accuracy trade-off as in perceptual
classification tasks

in fact, using decision time data to infer degree of intensity of
preference between different options, in addition to data on
choices themselves, can increase accuracy with which choices
between new pairs of options are predicted: Clithero and Rangel
(2013), Krajbich, Oud and Fehr (2014)
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Explaining Stochastic Choice

2 allows a choice-based evaluation of welfare (policies evaluated
from standpoint of personal objectives that are inferred from
people’s choices) without simply identifying whatever is chosen
on any occasion with what people most want

— becomes a reasonable goal of policy to reduce mistakes (or
costliness of mistakes)
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Example 2: “Tunnel Vision”

Mullainathan and Shafir (2013): behaviors that keep people
“trapped” (in debt, perpetually over-committed, . . . )

Argue that this reflects neither pathological preferences (e.g.,
extreme time preference) nor lack of cognitive ability

— attributed to focus on certain urgent matters, to the
exclusion of others (“important but not urgent”)

Analogous to familiar perceptual phenomena: deterioration of
performance on perceptual tasks due to inattention;

— “inattentional blindness” (Simons and Chabris, 1999),
“attentional capture” (Yantis, 1993)
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Example 3: Choice-Set Size Effects

A particular puzzle for standard choice theory: choice among a
given set of options can be influenced by the inclusion of
additional options, even when the new options are not chosen

Example: “choice overload”

Iyengar and Lepper (2000): 30 percent of customers buy when
offered 6 types of jam; — only 3 percent buy, when offered 24
types

Iyengar et al. (2004): larger number of options reduces fraction
who participate in 401(k) plan
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Choice-Set Size Effects

Effect of additional options easier to understand if one supposes
that representation of options is inaccurate, and becomes more
so when larger number must be represented

Again, similar phenomena familiar from sensory domains:
increased inaccuracy due to division of attention (Shaw, 1984)

Woodford (Columbia) Psychophysics of Choice September 2014 19 / 61



Limits on the Capacity to Discriminate

Both of these types of phenomena suggest: a theory of choice
needs to take into account the existence of a finite capacity to
discriminate between different situations

— such that the need to simultaneously represent multiple
aspects of a situation reduces the accuracy with which some (or
all) of them can be represented

Studying the nature of resource constraints in perceptual
domains may be valuable in suggesting how best to formulate
such a constraint
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Limits on the Capacity to Discriminate (1)

How to quantify such limits?

A simple approach often used by decision theorists in economics:
assume a finite bound on the number of different states that can
be distinguished (e.g., Gul, Pesendorfer and Strzalecki, 2013)

— subjective representation is a (coarser or finer) partition of
the possible states of the world

The problem of choosing such a partition optimally (if actions
must be chosen based on the coarse representation of the state)
is just the problem of optimal quantization in coding theory

— the problem of how such classifications can be learned is a
standard (“unsupervised learning”) problem in machine learning
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Bound # of Distinct Representations?

Not a formalization consistent with psychophysical evidence:
stimuli are not assigned deterministically to non-overlapping
categories (with however a limit on the number of categories)

— instead, categorizations are probabilistic, in the case of
sufficiently similar stimuli

One observes a bound on the number of distinct stimuli that can
be distinguished with perfect accuracy

— yet if one increases the number of stimuli that must be
distinguished, the result is not that the same small number of
categorizations continue to be used (though with multiple
stimuli given a single name), but rather that classifications
become increasingly random
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“Absolute Judgment” Experiments

Pollack (1952): subjects are asked to classify auditory tones of
different frequencies, according to their place in a sequence of n
possible tones

— baseline case: tones equally spaced in log frequency (over
range 100 cps – 8000 cps)

— tones presented in random order; correct classification
indicated after each response

Finding: subjects can classify with virtually perfect accuracy
(with sufficient training) as long as n = 2, 3, or 4;

— but responses become stochastic if n = 5, and progressively
less predictable as n increases (up to 14)
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“Absolute Judgment” Experiments

Quantifying randomness of responses:

if ex ante probability of stimulus s is πs , and conditional
probability of response r when stimulus s is presented is psr ,
then mutual information between S and R is

I = ∑
sr

πspsr log
psr
pr

where pr ≡ ∑s πspsr is unconditional probability of response r
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“Absolute Judgment” Experiments

I measures how informative the response R is about the true
stimulus S :

note that 0 ≤ I ≤ log n

— lower bound I = 0 if R is independent of S (so totally
uninformative);

— upper bound I = log n if r = s with certainty (maximally
informative);

and introducing additional randomness into either the value of s
entered as input, or the report that is given of the output r ,
necessarily reduces I

Pollack finds that I ≈ log n for n ≤ 4, but remains nearly the
same for all n ≥ 6
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Absolute Judgments of Frequency: Pollack (1952)

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  128.59.36.176 On: Mon, 28 Jul 2014
13:52:09

solid curve: averaging I for indiv. subjects; dashed curve: pooling
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“Absolute Judgment” Experiments

Similar results obtained for other stimulus attributes: loudness of
tones, length of lines, areas of geometric figures, brightness of
lights, intensity of electric current, etc.:

I does not increase with further increases in n, beyond a (low)
upper bound

upper bound on I around 2-2.5 binary digits per stimulus
presentation

Literature reviewed in Miller (1956), Laming (2011)

Suggests an alternative way of quantifying limit on capacity to
make fine distinctions: upper bound on mutual information
between true choice situation (attributes of available choices)
and subjective representation of this situation

— implies that capacity limit can result in fuzziness of
categories, not simply a small number of categories used
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Limits on the Capacity to Discriminate (2)

Sims (2003, 2011) theory of “rational inattention”: DM has that
partial information about the decision situation that is most
valuable (allows the highest average payoff to be obtained),
given the decision situation, subject to an upper bound on
mutual information between the true state of the world and
subjective representation

Sims often writes as if he has in mind a conscious decision to
direct limited attentional resources in one direction rather than
another, given an understanding of the available tradeoffs with
regard to accuracy of one’s choices

— but one may equally well view the allocation of attention as
reflecting an unconscious mechanism, that is simply efficient in
an environment with certain statistical regularities, as a result of
a process of adaptation
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Rational Inattention

Theory has been applied to:

modeling delays in the adjustment of firms’ prices, payrolls, etc.,
to changing market conditions

delays in adjustment of households’ spending to changes in
income

differential speeds of adjustment to economic news of different
types

explaining the finite elasticity of response of a supplier’s sales to
a price change, even when essentially identical goods are also
available from other sellers

explaining co-movement of different asset prices
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Rational Inattention

Predicts random choice, including in situations (like
Mosteller-Nogee experiment above) where hypothesis of random
utility is unappealing

in fact, in binary-choice setting, predicts that “psychometric
function” should be a logistic function of the value difference
between the two options, as often found in experimental data
(Woodford, 2008; Cheremukhin et al., 2011; Matejka and
McKay, 2013)

— without needing to postulate special distribution function for
utility variations, or exogenously specified errors
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Choice Data of Krajbich et al. (2010)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rel Value(R)

Pr
ob

(R
)

fit of RI model with one free parameter
Woodford (Columbia) Psychophysics of Choice September 2014 31 / 61



Rational Inattention

Can explain differential precision of subjective representation of
different aspects of a situation

— indeed, complete neglect of some aspects of decision
situation, even though they are payoff-relevant

however, this requires assumption that different aspects must be
processed separately:

— only feasible subjective representations of compound state
(x1, x2) are of form (r1, r2), where

p(r1, r2|x1, x2) = p1(r1|x1)p2(r2|x2)

form of restriction that is cognitively realistic, though not part
of Sims theory in pure form
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(x1, x2) are of form (r1, r2), where

p(r1, r2|x1, x2) = p1(r1|x1)p2(r2|x2)
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Bound on Mutual Information?

Nonetheless, there are reasons to doubt the realism of using I to
define a bound on the capacity to make discriminations:

1 A finite upper bound on I (only) would imply that it should be
possible to perfectly discriminate an arbitrarily large number n of
distinct stimuli, as long as only two (or fewer) of them occur
with any significant frequency

— only need for the ex ante frequencies πs to satisfy

∑
s

πs log(1/πs) ≤ Ī

making additional distinctions only increases I in proportion to
the frequency with which the distinctions matter

— so trivial cost of making fine discriminations among
very-low-probability states
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Bound on Mutual Information?

2 In the case of a continuously-distributed true state, and task of
minimum-MSE estimation of the state (or equivalent task), RI
implies should have equal uncertainty about the state, whether a
high-probability or low-probability state has occurred (Woodford,
2014)
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Posterior Uncertainty With Rational Inattention
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Bound on Mutual Information?

2 In the case of a continuously-distributed true state, and task of
minimum-MSE estimation of the state (or equivalent task), RI
implies should have equal uncertainty about the state, whether a
high-probability or low-probability state has occurred (Woodford,
2014)

Instead, regions of cortex associated with sensory processing
allocate more resources to discrimination among more frequently
occurring stimuli, allowing finer discriminations in that case
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Example: Discrimination of Orientation

Well-established that humans (and animals) can make sharper
discriminations between differing orientations that are
near-vertical or near-horizontal, than between oblique
orientations (“oblique effect”: Appelle, 1972)

Animal neurophysiology studies (e.g., of macaque V1) show this
explained by allocation of greater processing resources to the
former types of discriminations:

larger number of neurons with “preferred orientation” near
vertical or horizontal than near oblique angles

narrower “tuning curves” for neurons with preferred orientations
near vertical or horizontal

(Mansfield, 1974; Li et al., 2003; Wang et al., 2003)
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Example: Discrimination of Orientation

This can be viewed as efficient given the fact that in both
natural and man-made environments, horizontally and vertically
oriented edges occur more frequently than oblique orientations
(Ganguli, 2012)
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Orientation Discrimination (Ganguli, 2012)
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Orientation Discrimination (Ganguli, 2012)
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Discriminating Spatial Frequency (Ganguli, 2012)
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Discriminating Acoustic Frequency (Ganguli, 2012)
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Figure 3.1: Testing the predicted relationship between sensory pri-
ors, neural population properties (tuning width and cell density) and
psychophysical discrimination thresholds. Each row corresponds to a
particular sensory attribute: acoustic frequency, modulation frequency,
local orientation, spatial frequency, and speed. For each attribute, the
data in the starred panel was fit with a parametric form or histogram
density estimate (thick black lines, fitting details in methods). These
curves were used (after transformation according to Eqs. (3.1) or (3.2))
to generate predictions for all other panels in the same row. Since the
predictions include an unknown scale factor (that depends on resources
N and R), each curve is rescaled to minimize the squared error to the
associated data. (a-e) Estimated environmental distributions. Panels
a and b, the distribution of acoustic and modulation frequencies were
computed from commercially available compilations of animal vocaliza-
tions and background sounds [100–102]. Panel c, a histogram of
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Bound on Mutual Information?

General pattern: more precise discriminations made over parts of
the range of stimuli with greater probability density

— contrary to the prediction of “rational inattention” theory

Explanation seems to be: finer discriminations require more
neurons devoted to that kind of processing (allowing narrower
tuning curves and/or more averaging of the noise in individual
neuron’s response)

— which has a biological cost independently of how often given
stimuli will be encountered

Woodford (Columbia) Psychophysics of Choice September 2014 43 / 61



Bound on Mutual Information?

General pattern: more precise discriminations made over parts of
the range of stimuli with greater probability density

— contrary to the prediction of “rational inattention” theory

Explanation seems to be: finer discriminations require more
neurons devoted to that kind of processing (allowing narrower
tuning curves and/or more averaging of the noise in individual
neuron’s response)

— which has a biological cost independently of how often given
stimuli will be encountered

Woodford (Columbia) Psychophysics of Choice September 2014 43 / 61



Bound on Mutual Information?

3 If only cost of additional observations depends on the mutual
info between observation and the true state (including past
history of signals as part of that “state,” as Sims does), then
additional repetitions of same observation (independent
repetitions of same “experiment”) become progressively less
costly, because less new information

⇒ redundancy of additional observations not a reason not to
collect them; only count against limit on processing capacity to
the extent that they do provide new information
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Bound on Mutual Information?

But neural coding often seems to be organized to minimize
redundancy (Barlow, 1961, 1989; Atick, 1992)

principle used to explain structure of visual receptive fields in
the retina, LGN, and primary visual cortex

also used to explain temporal processing in cat LGN cells (Dan,
Atick and Reid, 1996)
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Temporal Processing in Cat LGN (Dan et al.)

Figure 3. The responses of LGN neurons evoked by white-noise stimuli. a, Autocorrelation functions of the same LGN neurons as those shown in Figure
2, a and b, evoked by full-field white noise. b, Power spectra of these neurons. c, Summary of the power spectra of 75 LGN neurons in response to full-field
white noise, normalized as described in Figure 2c. All the power spectra shown here had positive slopes. Some spectra showed small slopes, because they
were less well modulated by white-noise stimuli relative to their noise levels.

Dan et al. • Coding of Natural Scenes J. Neurosci., May 15, 1996, 16(10):3351–3362 3355

Power spectrum of spike trains from 51 cells

Input: white noise
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Temporal Processing in Cat LGN (Dan et al. 1996)

Figure 2. The responses of LGN neurons evoked by natural visual stimuli. a, Autocorrelation functions of the spike trains of three LGN neurons in
response to movies. The small secondary peaks for cells 2 and 3 were attributable to a weak 15 Hz artifact in the Media Player movies; see Materials and
Methods. b, Power spectra of the same neurons between 0 and 15 Hz. The power spectral density is in units of (impulses/sec)2/Hz. c, Summary of the
power spectra of 51 cells in response to movies. For the sake of clarity, each power spectrum is normalized by its own value at 5–6 Hz.

3354 J. Neurosci., May 15, 1996, 16(10):3351–3362 Dan et al. • Coding of Natural Scenes

Power spectrum of spike trains from 51 cells

Input: Casablanca
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Limits on the Capacity to Discriminate (3)

In each case, the problem with the mutual information bound is
its assumption that the capacity to make discriminations that
are not frequently used should not be costly

Alternative proposal (Woodford, 2012): an upper bound on the
quantity

C (p) ≡ max
π

I (π, p)

where p denotes the family of conditional probabilities p(r |x) for
each possible external state x , and I (π, p) is the mutual
information between X and R when external states occur with
ex ante probabilities π
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ex ante probabilities π
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Bound on Required Channel Capacity

C (p) ≡ max
π

I (π, p)

A criterion that depends only on the conditional probabilities p,
not the frequency with which different states are encountered

— bound is on the capacity to transmit information, whether it
is effectively utilized in a given environment or not

— Shannon’s definition of “channel capacity”

In the case of a deterministic classification, C = log n

— depends only on the number of categories, regardless of how
frequently used
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Bound on Required Channel Capacity

Can be thought of as measure of “effective number of
categories” that can be distinguished

— but like I bound, it is a constraint that implies a trade-off
between number of categories and their “fuzziness”

finite bound on C consistent with data of Pollack et al.:
C ≈ I in absolute judgment experiments, as long as uniform
distribution is close to being the info-maximizing π

but bound on C wouldn’t allow arbitrary number of precise
categories simply because environmental frequencies are
non-uniform
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An Efficient Coding Hypothesis

Like RI theory, hypothesis of efficient coding subject to bound
on C can explain differential precision of representation of
different aspects of a situation (if distinct aspects must be coded
individually)

— explanation for ”focusing illusions,” “tunnel vision,” etc.

But also implies, in case of a single continuously-distributed
attribute, that representation should be less precise in case of
states with smaller ex ante probability
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Posterior Uncertainty With Efficient Coding
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Efficient Coding and Biased Valuations

This non-uniform allocation of capacity to discriminate over the
range of variation in a single attribute can lead to biases in
choice

— even supposing that the information contained in the
subjective representation of the choice situation is used optimally

example: Gaussian prior for a real variable x , goal is
minimization of MSE of estimate of x

for given bound on C , the efficient coding is independent of
prior mean and variance:

— coding a function of normalized state z ≡ (x − µ)/σ,
minimum-MSE estimate of z also independent of µ and σ
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Mean Estimated Value vs. True Value
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Efficient Coding and Biased Valuations

This “S-shaped” relationship provides a possible explanation for
the form of the “value function” postulated by prospect theory
(Kahneman and Tversky, 1979)

can simultaneously explain risk-averse choices in the domain of
gains, and risk-seeking choices in the domain of losses

Woodford (Columbia) Psychophysics of Choice September 2014 55 / 61



Mean Subjective Valuations of Lotteries

certain gain preferred on average, but risky losses preferred as well
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Efficient Coding and Biased Valuations

Viewing the phenomenon as resulting from finite-precision
coding, rather than an arbitrary fact about how different things
are valued, not only provides a functional explanation, but also
implies that it should be present to a greater or lesser extent
depending on degree of scarcity of processing capacity

DeMartino et al. (2006): significant correlation between
decreased asymmetry between gain and loss domains and higher
activity in rOFC and vmPFC

growing body of fMRI evidence suggests that subjective values
of options are represented in vmPFC (e.g., Bartra, McGuire and
Kable, 2013; Rangel and Clithero, 2014; Platt and Plassmann,
2014)
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Efficient Coding and Biased Valuations

Porcelli and Delgado (2009): acute stress results in increased
asymmetry between gain and loss domains

AlAbsi et al. (2002) find stronger cortisol reaction to stress
associated with improved performance on sensory perception
task, but reduced ability to do mental arithmetic; suggest stress
reaction reduces capacity allocated to working memory
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Efficient Coding and Biased Valuations

These studies interpret their results in terms of a “dual systems”
view

OMPFC involved in allowing “rational” processes to override
“emotional” reactions

stress results in activation of “automatic” process rather than
more deliberate, rational one

But one might instead suppose that a single process is always
used, simply with more or less precise coding, depending on
available processing capacity
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Conclusions

There are advantages to thinking of many choice phenomena as
resulting from decisions based on imprecise subjective coding of
features of the choice situation

It may be possible to understand the form of such
representations using similar principles to those that explain
aspects of perceptual coding in sensory domains

— in particular, efficient allocation of scarce perceptual capacity

This is one of the more obvious areas in which findings from
neuroscience can guide theory development in economics
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